World Journal of Pharmaceutical Sciences ISSN (Print): 2321-3310; ISSN (Online): 2321-3086 Published by Atom and Cell Publishers © All Rights Reserved Available online at: http://www.wjpsonline.org/ Original Article

Antioxidant activity of Senecio Amplexicaulis Kunth. extracts

Rajendra Singh¹, Pratap Singh¹, Nitin Sati²*, Om Prakash Sati¹

¹Department of Chemistry, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India ²Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India

Received: 08-01-2015 / Revised: 25-02-2015 / Accepted: 27-02-2015

ABSTRACT

The present study was performed to evaluate antioxidant potential of *Senecio amplexicaulis* Kunth. extracts. The air dried powdered plant material was extracted with petroleum ether, ethyl acetate and methanol and concentrated using rotary evaporator. The extracts were evaluated for total phenolic content presence, total antioxidant capacity, reducing power, ability to scavenge various free radicals and ferrous ion chelation. Phytochemical investigation indicated the presence of significant amount of phenolic contents in the polar extracts of *S. amplexicaulis*. The phenolic content was maximum in ethyl acetate extract and lowest in the petroleum ether extract. The polar extracts were further evaluated for antioxidant potential. Ethyl acetate extract demonstrated higher total antioxidant capacity than methanolic extract. The polar extracts (100-600 μ g/ml) exhibited fair reducing power as indicated by high absorbance values in the reducing power assay. The polar extracts exhibited moderate free radical scavenging and ferrous ion chelating activities. The antioxidant potential of extracts are crude and the activity can be result of synergism or antagonism of the phytoconstituents present, the results are encouraging and points to a need for phytochemical analysis of the extracts.

Keywords: phenolics; free radicals; reducing power; ferrous chelation

INTRODUCTION

The genus Senecio includes about 1500 species distributed worldwide. The plants of this genus have been studied extensively because of the traditional medicinal uses associated with them. The secondary metabolites from Senecio are cytotoxic, antihyperglycemic, reported as antimicrobial, anti-inflammatory and antioxidant activity [1, 2]. Various plants parts like leaves, stems and flowers are used in folk medicine for the treatment of various ailments [3]. The chemical constituents of the genus Senecio include notably sesquiterpenoids, monoterpenoids, diterpenoids, triterpenoids, essential oils, pyrrolizidine alkaloids, phenolic and flavonoid compounds [4]. Most of the aquatic plants of this genus are known for containing furanoeremophilanes, steroids and the pyrrolizidine alkaloids senecionine and platyphylline [5,6]. S. amplexicaulis kunth Syn Ligularia amplexicaulis DC (Asteraceae) is a deciduous shrub found in north-west Himalayas (India) [7]. The traditional claim associated with Senecio species and lack of scientific studies regarding antioxidant potential of Senecio *amplexicaulis* prompted us to perform this study. The objective of the present study was to evaluate antioxidant potential of *Senecio amplexicaulis* extracts. The present paper for the first time reports antioxidant activity of *Senecio amplexicaulis* collected from north west Himalayas, India.

MATERIAL AND METHODS

Chemicals: Sodium carbonate, gallic acid, Folin-Ciocalteu reagent, rutin, ammonium molybdate, sodium phosphate, ferric chloride, potassium ferricyanide, trichloroacetic acid, 2, 2-diphenyl-1picryl-hydrazyl (DPPH), potassium persulfate, 2,2'azinobis-(3-ethylbenzothiozoline-6-sulfonic acid)diammonium salt (ABTS), 6-hydroxy-2,5,7,8tetramethylchroman-2-carboxylic acid (Trolox), ferrozine, ferrous chloride, ethylene diaminetetracetic acid (EDTA) disodium salt, ascorbic acid; were obtained from Himedia chemicals and Sigma. All other reagents used were of analytical grade.

Plant material and extraction procedure: Senecio amplexicaulis was collected (May-June) from north-west Himalayas (Uttarakhand, India) and

identified by Department of Botany, H. N. B Garhwal University (A Central University), Uttarakhand, India. Freshly collected stem was shade dried and cut into small pieces. The plant material (5 kg) was extracted in Soxhlet extractor with petroleum ether, ethyl acetate and methanol. The extracts were concentrated by rotary vacuum evaporator (40°C) and air dried to afford crude extracts. The yield of ethyl acetate and methanolic extracts were used for evaluation of antioxidant activity.

Determination of total phenolic content: The total phenolic content (TPC) was determined according to reported method [8]. The reaction mixture consisted of 0.5 ml extract, 2.5 ml of the Folin-Ciocalteu's reagent (10% v/v) and 2.0 ml of saturated sodium carbonate solution. The resulting mixture was vortexed for 15 sec and incubated (40°C, 30 min) for color development. The absorbance of total phenolics was measured at 765nm. Standard gallic acid solutions were used for calibration curve and results were expressed as gallic acid equivalent per gram of extract (mg GAE/g).

Total antioxidant capacity: Sample (0.3 ml) was mixed with 3.0 ml reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate and 4 mM ammonium molybdate). Reaction mixture was incubated at 95°C for 90 min. Absorbance of all the sample mixtures was measured at 695 nm [9]. Total antioxidant capacity was expressed as ascorbic acid equivalent per gram extract (mg AAE/g).

Reducing power: Different concentration of extracts (50-500 µg/ml) in 1 ml of alcohol was mixed with 2.5 ml phosphate buffer (0.2 M, pH 6.6) and 2.5 ml of 1% potassium ferricyanide. The mixture was incubated at 50°C for 20 min and 2.5 ml of 10% trichloroacetic acid was added. The reaction mixture was then centrifuged for 10 min. Further, 2.5 ml of the supernatant solution was mixed with 2.5 ml of distilled water and 0.5 ml of 0.1% FeCl₃. The absorbance was measured at 700 nm[10].

DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging activity: A 2 ml aliquot of solution was added to 2 ml of 2 x 10^{-4} mol/l ethanolic DPPH solution. The mixture was shaken vigorously and the absorbance was measured at 517 nm immediately. The decrease in absorbance was determined at 15 and 30 min until the absorbance reached a steady state (after nearly 30 min). The mixture with the addition of standard antioxidants served as a positive control [11]. All the tests were performed in triplicate, and the inhibition rate was calculated according to the following formula:

% Inhibition of DPPH free radical = $[(A_{blank} - A_{sample}) / A_{blank}] \times 100$

ABTS [2, 2'-azino-bis (3-ethylbenzothiazoline-6sulphonic acid] scavenging activity: ABTS free radical was produced by reacting 7mM ABTS aqueous solution with 2.4 mM potassium persulfate in the dark for 16 h at room temperature [12]. Prior to assay, the solution was diluted in ethanol and equilibrated at 30°C to give an absorbance of 0.700 \pm 0.02 at 734 nm. The stock solution of the sample extracts were diluted such that after introduction of 10 µl aliquots into the assay, they produced between 20% and 80% inhibition of the blank absorbance. After the addition of 1 ml of diluted ABTS solution to 10 µl of sample or Trolox standards in ethanol, absorbance was measured exactly 30 min after the initial mixing. Appropriate solvent blanks were also run in each assay and the percentage inhibition of the blank absorbance was calculated at 734 nm. Triplicate determinations were made at each dilution of the standard and percentage inhibition calculated and plotted as a function of Trolox concentration. The antioxidant activity is expressed as trolox equivalent antioxidant capacity (TEAC).

Ferrous ion chelation: Extract/standard (1 ml) was incubated with 0.5 ml of ferrous chloride (1 mmol). The reaction was initiated by the addition of 1 ml of ferrozine (5 mmol) and the total reaction volume was adjusted to 4 ml with ethanol. After the mixture had reached equilibrium (10 min), the absorbance was measured at 562 nm [13]. The negative control was prepared without the extract and EDTA was used as the positive control. The chelating activity of the extract on Fe²⁺ was calculated as follows:

Chelating activity (%) = $[(A_{control}/A_{sample}) - 1] \times 100$

RESULTS AND DISCUSSION

Total phenolic contents: Folin Ciocalteau method for determination of phenolic content is based on oxidation of phenol by molybdotungstophosphoric reagent to yield a colored product that can be quantified by measuring absorbance at 765 nm [14]. Gallic acid was used as reference standard and the phenolic content of the extracts was expressed in mg Gallic acid equivalents per gram of extract (Table 1). Ethyl acetate extract of *S. amplexicaulis* demonstrated the presence of highest phenolic contents followed by methanolic and petroleum ether extract. The high amount of phenolics in ethyl acetate and methanolic extracts suggested the possible antioxidant potential of the *Senecio amplexicaulis* extracts.

Rajendra et al., World J Pharm Sci 2015; 3(3): 600-604

Total antioxidant capacity: Total antioxidant capacity determination by phosphomolybdenum method is based on the reduction of molybdenum VI (Mo^{6+}) to form a green phosphate/ Mo^{5+} complex at acidic pH which can be estimated by measuring absorbance at 695 nm [15]. Ascorbic acid was used as a standard to express the antioxidant capacity of extracts. The antioxidant capacity expressed as ascorbic acid equivalent (AAE mg/g extract) of ethyl acetate and methanolic extracts are 37.8 and 23.6 respectively (Table 1). The ethyl acetate extract demonstrated higher total antioxidant capacity in comparison to methanolic extract.

Reducing power: Reducing power assay is based on the ability of extracts/reference compounds to reduce a yellow color Fe³⁺/Ferric cyanide complex to form Fe²⁺-ferrous complex which is estimated by measuring absorbance at 700nm [16]. A higher value of absorbance indicates higher reducing power of the extract. The methanolic extract demonstrated significant reducing power in the concentration range of 100-600µg/ml (Figure 1). The correlation between polyphenolic components and reducing power has been reported for several plant extracts. The results also indicate that methanolic extract of Senecio amplexicaulis consists of chemical structures with fair ability to donate electrons and convert reactive free radicals into stable products.

DPPH free radical scavenging ability: DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical changes its color from purple to yellow in the presence of antioxidant and is one of the most widely used to evaluate the antioxidant potential of extracts. Scavenging of the DPPH radical is also linked to the inhibition of lipid peroxidation. The results of the assay demonstrated antioxidant activity of extracts suggesting that the extracts are capable of donating hydrogen and acting as natural antioxidants. The ethyl acetate extract was potent in scavenging DPPH radical in comparison to methanolic extract. The radical scavenging ability was significantly low when compared to synthetic antioxidants like ascorbic acid and rutin. The potential to scavenge DPPH radical was measured by determining IC₅₀ value which indicate the concentration required to inhibit 50% of DPPH free radicals. IC₅₀ value of the ethyl acetate extract (264µg/ml) was lower than that of methanolic extract (376µg/ml) of Senecio amplexicaulis (Table 1). Lower value of IC_{50} indicates higher potency to scavenge DPPH free radicals.

ABTS radical cation scavenging assay: ABTS is a stable radical cation with blue color and characteristic absorption at 734nm. In this method an antioxidant is added to preformed ABTS radical cation and after a fixed time period the remaining ABTS is quantified spectrophotometrically [17].

Trolox (6-hydroxy-2, 5, 7, 8 -tetramethylchroman-2-carboxylic acid) a water soluble analog of vitamin E is used as standard to represent the antioxidant strength of sample as trolox equivalent antioxidant capacity (TEAC). TEAC is defined as micromolar trolox solution having an antioxidant capacity equivalent to 1g extract. The extracts exhibited good ABTS radical scavenging ability and were capable of decolorizing the ABTS radical. Trolox equivalent antioxidant capacity (Table 1) for methanolic extract and ethyl acetate are 7453.2 and 11547.6 respectively.

Ferrous ion chelation: Elemental species such as ferrous iron (Fe²⁺) can help in production of reactive oxygen species (ROS) within body and accordingly the ability of substances to chelate iron can be a measure of its antioxidant capacity [18]. The *Senecio amplexicaulis* extracts were also evaluated for iron (II) chelating ability (Figure 2) in the concentration range of 100-800µg/ml. At highest concentration the methanolic and ethyl acetate extract inhibited 52% and 40% of ferrous ion respectively. The chelating activity of the extracts was higher than rutin and significantly lower than the standard EDTA.

CONCLUSIONS

The extracts of Senecio amplexicaulis were evaluated for the presence of total phenolic contents and thereafter tested for antioxidant potential. The ethyl acetate and methanolic extracts demonstrated the presence of fair amount of total phenolic contents and were further evaluated for antioxidant potential. The ethyl acetate extract exhibited higher total antioxidant capacity than methanolic extract. The methanolic extract exhibited highest reducing power in the concentration range of 100-600µg/ml. The extracts demonstrated fair ability to scavenge free radicals; the ethyl acetate extract demonstrated higher potency in comparison to methanolic extracts in both DPPH and ABTS free radical scavenging assays. The methanolic extract exhibited higher ferrous chelating activity than ethyl acetate extract in the concentration range of 100-800µg/ml. The antioxidant potential exhibited by the extracts was low when compared to standard antioxidants like rutin and ascorbic acid. The results are encouraging as these are obtained by crude extracts. In conclusion, the polar extracts of Senecio amplexicaulis demonstrated antioxidant potential and suggest a need for phytochemical analysis of the polar extracts.

ACKNOWLEDGEMENT

The authors are thankful to University Grants Commission, New Delhi for providing financial assistance under Major Research Project grant.

Rajendra et al., World J Pharm Sci 2015; 3(3): 600-604

Extract/	TPC ^a	TAOC ^b	DPPH	ABTS ^c
Standard	(mg GAE/g)	(mg AAE/g)	$IC_{50}(\mu g/ml)$	(TEAC)
PESA	113	ND	ND	ND
EASA	306	37.8	376	11547.6
MESA	284.4	23.6	264	7453.2
Rutin	-	-	45	-
Ascorbic acid	-	-	21	-

Table 1: Total phenolic contents and antioxidant potential of *Senecio amplexicaulis* extracts.

Note: PESA, EASA and MESA are petroleum ether, ethyl acetate and methanolic extracts of *S. amplexicaulis* respectively; ^atotal phenolic contents (TPC) are expressed as gallic acid equivalent; ^btotal antioxidant activity (TAOC) is expressed as ascorbic acid equivalent; ^cTEAC is trolox equivalent antioxidant capacity defined as micromolar trolox solution having antioxidant activity equal to 1 g extract; ND is not determined.

Figure 1: Reducing power of Senecio amplexicaulis extracts.

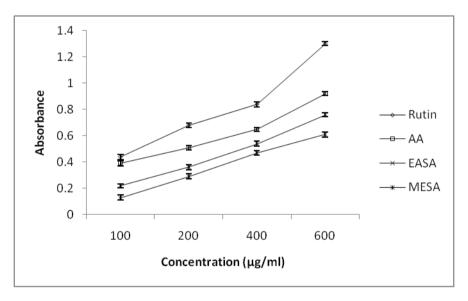
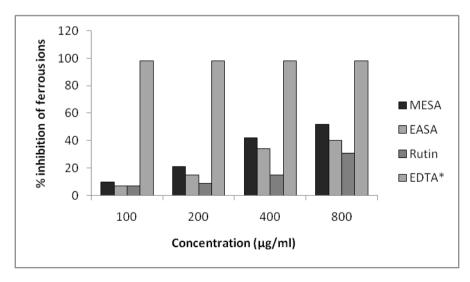



Figure 2: Ferrous ion chelation by Senecio amplexicaulis extracts.

REFERENCES

Rajendra et al., World J Pharm Sci 2015; 3(3): 600-604

- 1. Estrada MJ et al. Anti-inflammatory activity of cacalol and cacalone sesquiterpenes isolated from *Psacalium decompositum*. J Ethnopharmacol 2006; 105: 34-8.
- 2. Hammond GB et al. A survey of traditional medicinal plants from the Callejon de Huaylas, J Ethnopharmacol 1998; 61: 17-30.
- 3. Uzun E et al. Traditional medicine in Sakarya Province (Turkey) and antimicrobial activities of selected species, J Ethnopharmacol 2004; 95: 287-96.
- 4. Pomilio AB, Jarres EA. Toxic furanoeremophilanes from *Senecio bonariensis*. Int J Pharmacogn 1997; 35: 207-11.
- 5. Tettamanzi MC et al. Constituents of *Senecio bonariensis* roots. Fitoterapia 1992; 63: 551-52.
- 6. Paiva JA et al. Pyrrolizidine alkaloids in three Senecio species from southern Brazil. Biochem Syst Ecol 2004; 32: 1219-22.
- 7. Gaur RD. Flora of district Garhwal north-west Himalayas, 1st ed.; Trans Media: Srinagar Garhwal, 1999.
- Mbaebie BO et al. Phytochemical analysis and antioxidants activities of aqueous stem bark extract of *Schotia latifolia* Jacq. Asian Pac J Trop Biomed 2012; 118-24.
- 9. Prieto P et al. Spectrophotometric quantification of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to determination of Vitamin E, Anal Biochem 1999; 269: 337-41.
- 10. Oyaizu M. Studies on product browning reaction prepared from glucose amine. Japan J Nutri 1986; 44: 307-15.
- 11. Sheng JC et al. Antioxidant activity of ethanol and petroleum ether extracts from Brazilian propolis. Eur Food Res Tech 2007; 225: 249-53.
- 12. Roberta R et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Rad Bio Med 1999; 26: 1231-37.
- 13. Wang T et al. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 2009; 116: 240-48.
- 14. Yuan Z, Wang Z. Phenolic composition and antioxidant activities of two Phlomis species: A correlation study. C R Biologies 2009; 332: 816-26
- 15. Jingsheng H et al. In vitro and in vivo antioxidant activity of the ethanolic extract from *Meconopsis quintuplinervia*. J Ethnopharmacol 2012; 141: 104-10.
- Kaviarasan S et al. In vitro studies on antiradical and antioxidant activities of fenugreek (*Trigonella foenum graecum*) seeds. Food Chem 2007; 103; 31–7.
- 17. Chi-Chun W et al. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 2006; 97: 705-11.
- Marcio C, Isabel CR. A review on antioxidants, proxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 2013; 51: 15–25.