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ABSTRACT 
 

In a drug discovery program aimed at finding new anti-trypanosomal drugs, we developed the N, N-

dimethylformamide.diiodine complex (DMF.I2) as an innovative and efficient green catalyst for the 

condensation reaction of aldehydes/ketones with arylthiosemicarbazides. The design of this catalyst was 

rationalized on the basis of a mechanistic proposal which establishes the existence of a catalytic loop 

regenerating I2 at the end of the catalytic process.  In general, yields were fair to good at extremely low end 

catalyst concentration.  DMF.I2 is the first catalyst that allows for high yield in the condensation of 

aldehydes/ketones with arylthiosemicarbazide at sub-micromolar concentration. 
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INTRODUCTION 

 

In order to discover news drugs for treating 

trypanosomiasis which causes serious damages in 

sub-saharian Africa and latin America populations, 

we explored thiosemicarbazones which are 

compounds which have received a lot of attention 

in the field of medicinal chemistry, due to their 

multiple pharmacological properties, such as i.a. 

antiviral [1–3], antibacterial [4–6], antifungal [7–

8], antitumor [9-12] and antiparasitic activities 

[13]. The use of molecular iodine in organic 

synthesis has been known for a long time. In recent 

years, molecular iodine has received considerable 

attention as an inexpensive, nontoxic, ecofriendy 

and readily available catalyst for various organic 

transformations under mild and convenient 

conditions to afford the corresponding products in 

excellent yields with high selectivity [14].  In 

recent decades, the use of molecular iodine, a 

Lewis acid, has attracted considerable attention.  It 

requires generally only a short reaction time, 

simple work-up, use of simple precursors to 

synthesize complex molecules and it is a moisture-

stable mild Lewis acid in synthetic organic 

chemistry [15].  The mild Lewis acid nature of 

iodine has been exploited in a variety of reactions 

and in our research; we envisaged from the very 

beginning that molecular iodine could play a dual 

role both as a catalyst that initially promotes the 

formation of the first tetrahedral adduct and 

subsequently its decomposition [16;17]. 

 

Previous works from this group aimed at 

synthesizing compound libraries established the 

efficacy of two major catalysts in the synthesis of 

thiosemicarbazones in the general context of the 

nucleophilic generalized acid-base catalysis, i.e. 

anilinium chloride on the one hand and anthranilic 

acid, on the other hand [18;19].  Both catalysts, 

while very efficient in most instances, suffer from 

the fact that they are based on Brønsted acids 

and/or bases and may therefore interfere with acid 

or base sensitive functions in polyfunctional 
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molecules.  We therefore searched for a form of 

milder catalyst species that would also be endowed 

with Green Chemistry characteristics.  In another 

context, our group developed the DMF.I2 Lewis 

salt complex as unique efficient catalyst for 

Friedel-Crafts acylation of highly activated 

aromatic substrates [20]. We therefore attempted to 

use this catalyst for the synthesis of 

semicarbazones and thiosemicarbazones since 

DMF.I2 contains both a Lewis acid (I2) and a Lewis 

base (DMF) in the same way as anilinium chloride 

and anthranilic acid contain both a Brønsted base 

and acid entities and work in symbiosis as a buffer 

in a generalized acid-base catalysis process. To our 

pleasure, initial exploratory experiments using our 

benchmark reaction (i.e. condensation of 4’-

nitroacetophenone with 4-phenylthiosemi 

carbazide) proved quite satifactory.  Moreover, the 

DMF.I2 complex can be considered indeed as a 

green catalyst since DMF is readily biodegradable 

and diiodine is naturally present in the biosphere 

(for example, in sea water). 

 

MATERIALS AND METHODS 

 

Experimental Section: Melting points were 

determined using an Electrothermal 9100 melting 

point apparatus and are uncorrected.  1 H- and 13C-

NMR spectrum was recorded at ambient 

temperature on an Avance II Bruker 400 MHz 

UltrashieldTM spectrometer.  Compounds were 

dissolved in CDCl3 and chemical shifts are 

expressed in the δ scale with TMS as internal 

standard.  Thin layer chromatography analyses 

were performed on Merk TLC plates (silica gel, 60 

F 254, E. Merk, Darmstadt, ref. 5735).  All 

reported compounds were routinely checked in two 

standard solvents, i.e. acetone/toluene/cyclohexane 

(solvent A, 5:2:3, v/v/v) and chloroform/methanol 

(solvent B, 90/10, v/v).  Reverse-phase thin layer 

chromatography conditions were: HPTLC plates 

RP-18 F-254 S (Merk), methanol: water (75/25, 

v/v).  All compound reported were found 

homogenous under such TLC and HPLC 

conditions.  All reagents were purchased from 

ACROS.  All solvents were of the ACS reagent 

grade.  Compounds were also subjected to RP-

HPLC analysis using standard conditions. 

 

(1-(4-nitrophenyl)ethylidene)-4-phenyl-

thiosemicarbazide: This synthesis is 

representative of the standard conditions used in all 

of the preparations listed in the Table 1, 2, and 3.  

To a room temperature solution of 4’-

nitroacetophenone (50 mmol) and 4-

phenylthiosemicarbazide (50 mmol) in 20 mL of 

methanol were added in sequence 250 mg of 

diiodine dissolved in 0, 50 mL of DMF.  The 

solution turning gradually to slurry was 

magnetically stirred at 65° for 1 h, rapidly cooled 

in an ice bath, and filtered on a Büchner funnel to 

give 91% yield of TLC-pure vacuum-dried yellow 

crystals. Mp: 196-198°C (unaffected after multiple 

recrystallizations from methanol), 1H-NMR 

(CDCl3) δ(ppm): 9.35 (s, 1H, NH), 8.92(s, 1H, 

NH), 8.27-7.27(m, 9H, ArH), 2.41(s, 3H, CH3), 
13C-NMR (CDCl3) δ(ppm) : 177.13, 148.99, 

145.05, 143.82, 138.23, 129.60, 128.21, 127.81, 

127.20, 125.00, 124.61, 14.44 

 

4-phenylthiosemicarbazide: Rf (n-hexane/ethyl 

acetate, v/v: 8/2): 0.20. 1H- NMR (DMSO-d6 δ en 

ppm): 9.68 (s, 1H, -CSNH-Ph), 9.15 (s, 1H, -

CSNH-), 7.67 to 7.08 (m, 5H, H-aromatic), 4.80 (s, 

2H, -NH2). 13C- NMR (DMSO-d6 δ (ppm): 179.31 

(C=S), 139.25 (C aromatic-NH-), 128.02, 124.05, 

123.51 (C-aromatic). 

 

1-tetralone-4-phenylthiosemicarbazone: Rf (n-

hexane/ethyl acetate, v/v: 8/2): 0.31. 1H-NMR 

(DMSO-d6 δ (ppm): 10.52 (s, 1H, -CSNH-Ph), 

10.11 (s, 1H, =NNH-), 8.44, 8.42 and 7.62 to 7.19 

(m, 9H, H-aromatic), 2.82 to 2.76 (m, 4H, H-

cyclohexane), 1.85 (s, 2H, H-cyclohexane). 13C-

NMR (DMSO-d6 δ (ppm) : 176.83 (C=S), 148.87 

(C=N), 140.27, 139.18, 131.73, 129.34, 128.43, 

128.05, 126.15, 125.81, 125.63, 125.50 (C-

aromatic), 28.92, 26.12, 21.39 (CH2-cyclohexane). 

 

4’-bromo-acetophenone)-4-phenyl 

thiosemicarbazone: Rf (n-hexane/ethyl acetate, 

v/v: 8/2): 0.25. 1H-NMR (DMSO-d6 δ (ppm) : 

10.65 (s, 1H, -CSNH-Ph), 10.10 (s, 1H, =NNH-), 

8.02 to 7.21 (m, 9H, H-aromatic), 2.38 (m, 3H, -

CH3). 13C-RMN (DMSO-d6 δ (ppm) : 177.12 

(C=S), 147.69 (C=N), 139.14, 136.69, 131.10, 

128.92, 128.07, 126.01, 125.43, 122.43, 122.92 (C-

aromatic), 14.23 (CH3). 

Fluorenone-4-phenylthiosemicarbazone: Rf (n-

hexane/ethyl acetate, v/v: 8/2): 0.35. 1H-NMR 

(DMSO-d6 δ (ppm): 11.31 (s, 1H, -CSNH-Ph), 

10.56 (s, 1H, =NNH-), 8.19 to7.25 (m, 13H, H- 

aromatic). 13C-RMN (DMSO-d6 δ en ppm): 

177.99 (C=S), 146.67 (C=N), 141.51 à 120.22 (C-

aromatic). 

 

1-4’-nitro-benzaldehyde-4-

phenylthiosemicarbazone: Rf (n-hexane/ethyl 

acetate, v/v: 8/2): 0.12. 1H-NMR (DMSO-d6 δ 

ppm): 12.11 (s, 1H, -CSNH-Ph), 10.34 (s, 1H, 

=NNH-), 8.19 (s, 1H, -CH=N-), 8.10 to 7.84 to7.57 

à 7.31 (m, 9H, H-aromatic). 13C-RMN (DMSO-d6 

δ (ppm) : 176.51 (C=S), 147.65 (C=N), 140.52 à 

138.91 et 128.97 à 123.71 (C- aromatic). 

 

Benzophenone-4-phenylthiosemicarbazone: Rf 
(n-hexane/ ethyl acetate, v/v: 8/2): 0.51. 1H-NMR 

(CDCl3-d6 δ (ppm): 8.75 (s, 1H, -CSNH-Ph), 9.45 
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(s, 1H, =NNH-), 7.60 to7.25 (m, 15H, H- 

aromatic). 13C-RMN (DMSO-d6 δ (ppm) : 176.47 

(C=S), 149.22 (C=N), 137.11, 135.73, 130.49, 

129.65, 129.15, 128.02, 127.75, 125.38 (C-

aromatic). 

 

RESULTS & DISCUSSION 

 

In Table 1, we present the performance of DMF. I2 

in comparison with other catalyst based on 

Brønsted systems.  As can be seen, DMF.I2 works 

quite satisfactorily and performs more or less at the 

level of other excellent catalysts.  Encouraged by 

these results, we studied the influence of the ratio 

substrate: catalyst.  Contrarily to the behavior of 

other catalysts, we found that DMF.I2 was able to 

boost the condensation of 9-fluorenone with 4- 

transformation is nearly quantitative with a local 

concentration of 500 mg of diiodine in the reaction 

medium, when for example equimolecular amounts 

50 mmol of 4-nitroacetophenone and 4-

phenylthiosemicarbarbazide were refluxed in 20 ml 

of methanol for 1h in the presence of 250 mg of 

diiodine dissolved in 0.5 mL of DMF, a consistent 

yield of 91 % of crystalline thiosemicarbazone was 

obtained.  In the same conditions, dividing the 

amount of catalyst by 8 barely affected the yield 

(86%).  Even better results were obtained using 9-

fluorenone as ketone partner (see Table 2), 

especially considering the striking 76% yield with 

2mg of catalyst. 

 

Table 1: Comparison of catalytic systems with regard to the actual yield in the condensation of 4’-

nitroacetophenone with 4-phenylthiosemicarbazide in the same reaction conditions 

Entry(#)

) 
Catalyst Yield (%) 

1 Aniline/acetic acid 70 

2 Aniline/formic acid 82 

3 Aniline/hydrochloric acid 88 

4 L-Proline 75 

5 Guanidine hydrochloride 59 

6 Acetic acid 86 

7 Montmorillonite K-10 32 

8 Anthranilic acid 90 

9 DMF.I2 91 

 

                     All reactions were performed in the same conditions: methanol, 65°C, 1 h 

 

 
 

Scheme 2: Mechanism of DMF.I2 complex formation showing equilibration between the free species and the 

Lewis salt stabilized by mesomery 

 

 

Table 2: Synthesis of some thiosemicarbazones using DMF.I2 as catalyst under standard conditions 

 

Entry(#) Compounds Yield (%) 

1 1- tetralone-4-phenylthiosemicarbazone 59 

2 1-bromoacetophénone-4-phenylthiosemicarbazone 68 

3 1-fluorenone-4-phenylthiosemicarbazone 99 

4 9-fluorenone-4-chlorophenylthiosemicarbazone 79 

5 4-acetylbiphenyl-4-phenylthiosemicarbazone 92 

6 4’-nitroacetophenone-4-chlorophenylthiosemicarbazone 65 

7 1-4’-nitroacetophénone-4-phenylthiosemicarbazone 91 

8 1-3’-nitro-benzaldehyde-4-phenylthiosemicarbazone 62 

9 Benzophenone-4-phenylthiosemicarbazone 45 
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In Table 3, we have exemplified the versality of 

our catalyst on a variety of situations.  Good to 

excellent yields were always observed, with a 

bemol for benzophenone derivatives.  In most 

cases, isolation of the resulting product is most 

straightforward as the pure product (TLC) 

spontaneously crystallizes out from the reaction 

medium.  We are now fostering this technique for 

the further elaboration of a compound library of 

antitrypanosomal arylthiosemicarbazones.  As 

illustrated in Scheme 1, we propose a mechanism 

to rationalize the catalysis offered by DMF.I2.  

When dissolved in DMF, diiodine interacts with 

the solvent to generate a reservoir of both diiodine 

and iodide anions.  The former will then act in the 

condensation as a Lewis acid while the latter anion 

will act simultaneously as a Lewis base (Cfr 

Scheme 2).  Formally speaking, the mechanism 

proposed over here is essentially the same as that 

published elsewhere [13; 18; 19]. using Brønsted 

based catalyst.  At the end of the process, HI serves 

as leaving group. Interestingly enough, reaction of 

leaving group HIO with HI concomitantly 

produced a regenerated diiodine to end up in a 

functional catalytic loop, and this explains the 

paucity of catalyst required to efficiently effect this 

reaction in high yield. 
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Scheme 1: Mechanism of the catalysis offered by Lewis’s complex DMF.I2 

 

 

 

Table 3: Catalytic effect of DMF.I2 upon catalyst dilution   

 

Name of products Weight of I2 (mg) Yields (%) 

1-fluorenone-4-phenylthiosemicarbazone 500 mg 99 

1-4’-nitroacetophénone-4-phenylthiosemicarbazone 250 mg 96 

1-4’-nitroacetophénone-4-phenylthiosemicarbazone 125 mg 88 

1-fluorenone-4-phenylthiosemicarbazone 32 mg 86 

1-fluorenone-4-phenylthiosemicarbazone 2 mg 76 

1-fluorenone-4-phenylthiosemicarbazone 0 mg 0 

 

 

CONCLUSION 

 

In an effort to find a greener alternative to 

anilinium chloride as catalyst in the condensation 

of aldehydes/ketones with thiosemicarbazide 

derivatives, we developed the complex DMF.I2 as 

an innovative and efficient catalyst.  In this paper, 

we have shown that DMF.I2 (Scheme 2) is an 

efficient green catalyst in the condensation reaction 

of (thio)semicarbazides with a variety of ketones.  

This technique is now applied for the elaboration of 

a compound library of antitrypanosomal 

pharmacomolecules.  A mechanistic proposal based 

on the existence of a catalytic loop is also 

suggested to explain why DMF.I2 is catalytic even 

at low concentrations. 
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