

Variation in the essential oil of *Origanum vulgare* (L) growing at different geographical locales of Kashmir Himalayas, India

Mudasir A. Sheikh* and Shayista Chishti

Department of Botany, University Of Kashmir, Srinagar, J&K-190006, India

Received: 16-01-2016 / Revised: 30-01-2016 / Accepted: 01-02-2016 / Published: 01-02-2016

ABSTRACT

The agro climatic conditions of Kashmir valley provide an ideal habitat for the growth of variety of aromatic and medicinal plant species. The present study was conducted to analyse the essential oils obtained from *Origanum vulgare* (L.) family Lamiaceae and the variability in oil composition of the same species growing at different geographical locales viz. Srinagar, Pulwama and Tangmarg regions of Kashmir. The essential oil was obtained by hydro distillation of the aerial parts and analysed by Gas Chromatography coupled with Mass Spectrometry (GC-MS) for their chemical composition. Overall (34) thirty four different constituents were isolated and identified in its oil and the major compounds found are Gamma terpinene, Paracymene, Carvacrol, Cymene, Sabinene and Cis- sabinene hydrate acetate. Moreover, the percentage composition of the main components of its essential oil showed marked differences as a result of changing geographical regions.

Key words: Origanum vulgare, phytochemistry, GC-MS, essential oil.

INTRODUCTION

Origanum vulgare (L.) is one of the important perennial ethno medicinal plant having Ayurvedic importance and trade values as well. It is locally known as Jungali Tulsi or Oregano or Himalayan marjoram and belongs to the family Lamiaceae, tribe Mentheae. This is the only species of genus *Origanum* which is found in India. It is found in temperate Himalayas from Kashmir to Sikkim at an altitude of 1500-3600m. It is particularly grown in Shimla Hills, Gilgit, Nilgris and in the Kashmir valley. Genus Origanum comprises of 42 species and 18 hybrids widely distributed in Eurasia and North Africa (Ietswaart, 1980; Duman *et al.*, 1988, Kokkini, 1997). It is native to the mountainous parts of Mediterranean region of Europe and Asia.

Oregano is the commercial name of those Origanum species that are rich in the phenolic monoterpenoids, mainly carvacrol and occasionally thymol (D'antuono et al., 2000). A number of chemically related compounds i.e. p-cymene, yterpinene, carvacrol methyl ethers, thymol methyl ethers, carvacrol acetates and thymol acetates, pcymen-8-ol, thymoquinone, and thymo hydroquinone are found in the oil. The other chemical quantitatively compounds, less

significant, are acyclic monoterpenoids such as geraniol, geranyl acetate, linalool, linalyl acetate and β -myrecene. Besides some sesquiterpenoids such as β - caryophyllene, β -bisabolene, β bourbonene, germacrene-D, bicyclogermacrene, α humulene, α - muurolene, γ -muurolene, γ -cadinene, allo-aromadendrene, α -cubebene, α -copaene, α cadinol, β -caryophyllene oxide and germacrene-D-4-ol are also present. In some *Origanum* plants sabinyl compounds such as *cis*- and/or *trans*sabinene hydrate, α -thujene, sabinene, *cis*- and *trans*-3 sabinene hydrate acetates, *cis*- and *trans*sabinol and sabina ketone can also be found (Skoula and Harborne 2002).

There have been previous investigations on the chemical composition and content of the essential oil of *O. vulgare* from the Turkey (Sezik *et al.*, 1993), India (Pande *et al.*, 2000)), Bulgaria (Kula *et al.*, 2007), Brazil (Cleff *et al.*, 2010), Kumaon Himalayas (Verma *et al.*, 2010). However, there is no report on the comparative study of the essential oil of *O. vulgare* growing at different geographical locales of the Kashmir Himalaya. Thus this study is aimed at the chemical analysis and the comparative assessment of essential oils of *O. vulgare* grown at different geographical locales of Kashmir Himalaya.

*Corresponding Author Address: Mudasir A. Sheikh, Department of Botany, University Of Kashmir, Srinagar, J&K India. 190006; email: mudasir_ssm@yahoo.com

MATERIALS AND METHODS

Essential oil isolation: The plant material of Origanum vulgare (L.) collected from three different geographical locales of Kashmir Himalaya (viz. Sanantnagar- Srinagar, Bonnera-Pulwama and Yaarikhah- Tangmarg) were identified at KASH herbarium, University of Kashmir, under voucher specimen Nos. 1822, 1823 and 1900 respectively. The aerial parts like stem, branches and leaves weighing 100 grams each, were separately shade dried, crushed and subjected to hydro distillation using a Clevenger apparatus until oil distillation ceased after 3 hours, according to the protocol described in the European Pharmacopeia (Council of Europe, 1997). The volume of essential oil was determined from a calibrated trap. The essential oils in the distillate were dried over anhydrous sodium sulphate (Na₂SO₄) so as to remove water if any, after extraction. The essential oils were separately stored in sealed vials at 4°C until analysed. The oil vield was calculated on fresh weight basis percentage of volume by weight.

Analysis of Essential Oils: Analysis of Essential Oil was done using Gas Chromatography coupled with mass spectrometry (GC/MS) to know the composition of oil and quantity of each compound present.

Gas Chromatography-Mass Spectrometry (GC/MS) analysis: GC-MS analysis were carried on a Varian Gas Chromatograph series 3800 fitted with a VF-MS fused silica capillary column (60m x 0.25mm, film thickness 0.25 μ m) coupled with a 4000 series mass detector under the following conditions: injection volume 0.5 μ l with split ratio 1: 60, Helium as a carrier gas 1.0 ml / min constant flow mode , injector temperature 230 °C, oven temperature 60 to 280°C at 3°C / min. Mass spectra: electron impact (EI⁺) mode 70 ev and ion source temperature 250 ° C. Mass spectra were recorded over 50 - 500 amu range.

Identification of essential oil constituents was done on the basis of retention Index (RI), determined with respect to homologous series of n- alkanes (C₅-C₂₈, Polyscience Corp., Niles IL) under the same experimental conditions, co injection with standards (Sigma Aldrich and standard isolates), MS Library search by comparing with the MS literature data (Jennings and Shibamoto, 1980; Adams, 2007).The relative percentages of individual components were calculated based on GC peak area (FID response) without using correction factors.

RESULTS

Chemical composition of the essential oil: Chemical composition of essential oil of Origanum vulgare (L.) growing at different geographical locales of Kashmir Himalaya, the percentage yield of the compounds is presented in Table1. In total 16-34 different compounds were identified in its essential oil. In the present study sixteen compounds were identified in the essential oil of Origanum vulgare (L.) growing at (Sanantnagar) Srinagar, while as twenty five each were found in the essential oil plant species growing at Pulwama and Tangmarg locales of Kashmir valley. The essential oil composition of the three plant populations appeared quite different and allows us to identify three different chemotypes. The study revealed marked difference not only in the oil composition but also in the quantity of compounds present in the oil of plant species growing at different locales.

The most abundant components in the essential oil of *Origanum vulgare* (L.) growing at Srinagar, which is at an altitude of 1585mts absl are γ -terpinene (38.394%), followed by cymene (23.943%), Sabinene (15.257%), cis- oscimene (5.114%), β trans ocimene (4.106%), methyl carvacrol (3.495%), alpha terpinene (2.250%) (fig 1).

Table C	ongounds				The second second	1000					
Capd. Banbar 1 2 7 4 5 4 5 4 5 4 5 10 11 12 13 14 15 16		Park Kane Alpha-Thristen Jabinere Befa -Flarten Alpha Torginase CHORT Linosene CII-CCIMEE befa -CLANARE MITTEL CANARED Germacree 0 Germacree 0 Gia-Alpha -Flastolene Germacree 0 Gia-Alpha -Flastolene delta -Calisson	2300 3400 3403 3403 3403 3403 4503 4503 19534 19535 19534 19544 19546 1954 19546 19546 19546 19546 19546 19546 19546 19546 19546 19566 19566 1957676 19576 19576 19576 19576 19576 19576 19576 19576 1	Amount/198 0, 188 0, 1954 15, 2257 1, 218 2, 256 23, 563 0, 163 3, 164 4, 106 18, 394 1, 245 1, 246 5, 158	B. S. S. S. S. S. S.	_	 - II	24 10 10 10 10 10 10 10 10 10 10 10 10 10	1	1310500	1 1

FIG.1: GC/MS analysis of oil sample obtained from specimen growing at Srinagar.

Mudasir and Chishti, World J Pharm Sci 2016; 4(2): 247-251

The phytochemical analysis of the essential oil of *Origanum vulgare* (L.) growing at Pulwama (Bonera) locale of Kashmir Himalaya which is at an altitude of about 1830mts absl revealed that the major components of its essential oil are γ -terpinene (25.725%), followed by p-cymene (21.123%), sabinene (18.083%), carvacrol (14.782%), β trans ocimene (3.430%) and β caryophyllene (2.953%) (Fig.2). Precursors of

phenolic compounds like γ -terpinene and pcymene (the two monoterepene hydrocarbons) were much higher in Pulwama area. In case of the phenolic compounds, the metabolic pathway is through the auto oxidative conversion of γ terpinene to p-cymene followed by hydroxylation of p-cymene to thymol carvacrol as is quite markedly found in our observations. The same is confirmed by Poulose *et al.*, (1978).

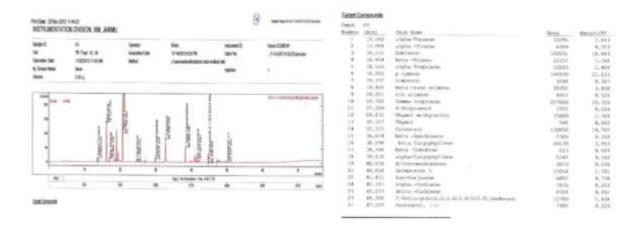


FIG 2: GC/MS analysis of oil sample obtained from specimen growing at Bonnera Pulwama.

In the examination of the essential oils of *Origanum vulgare* (L.) growing at (Yaarikhah) Tangmarg (2180mts absl, highest among the three), the major component of its essential oil was found to be p-cymene (33.290%), followed by carvacrol (27.198%), cis-sabinene hydrate acetate (8.737%), γ -terpinene (8.429%), sabinene

(6.527%) and 4- terpineol (2.442%) (fig 3). Cissabinene hydrate acetate is a compound of intense spicy "marjoramy" aroma and was found only in *Origanum vulgare* growing at Tangmarg (high altitude) area. So, selection of this geographic altitude for isolation of Cis-sabinene hydrate acetate is a remarkable observation of our analysis.

Se Syncest Trumentatio	N DHISON, IM, JA	amu					0	Depart.C	ongounde ver			
el.	8	(pertor	in.	(through the	VearO	151		Extin	20141	Thus Hans	h198	/#0631/91 3.4/4
	RINKS	Aquition Tate	114201547	t Jafe	1.2	2156Notas	£ 5	1	18,000	sipte-Trujene	39(1	5,410
	and the second second								14,437	Alpha -Tanno Cambona	101	5.158
inter lan	100012596	Netical	Carriento	dialesise heltot till					34.154	Compose a	311.24	6,327
inge kom	No.			iptin	1				16,010	bata - Finata	6665	0.017
	124								18,389	alpha Tarribera	1447	1,754
	100								16.874	2 Change	184357	11.19
									18,237	Linuana	2153	8.27
1		1 2		1	TAPP	CERCIPATION OF	et interest	12	20.169	als origins	8357	5.49
्रम् ज्ञीलाः स		a. ?	1	-			-	15	20.766	listen territerte	41947	8.12
1		- al vanu	截	. 5			1	3.8	21.457	3-Carson	32525	0.96
		K I	要 1	1 1			1	33	22.223	Permindiana	1095	0.29
1		11 H E .	5 I	1.9			3	38	25.178	CLN REALMORDS WITHART ALETATE	10036	6.73
1			1	1.2			1	14	26.826	Borneyl	7612	1.23
-	1		1				1	3.5	37.338	4-Terptivenil	13888	2.66
1	THE REAL		1	21			1	18	19.492	Thyme's methalisting	12235	0.28
13	12	282		- Alline -			4	28	32.353	Trynci	4839	0.40
1	1	15 6 /*	B 13				1	13	32.738	Capracesi	0.54700	27.38
1	¥.,	L LIT E	R	L B.	-	-	-	22	16.194	teta -Buurboente	1804	1,10
-	1			74				318	18,106	bets Galgoptythere	8000	0.88
1 million	*	1	1 6	*			inde:		10.111	alphe-Caryoptellave	1881	1,33
R.			10.000	10.00				- 10	45,154	Germanya D	1341	3,36
4		tiz.	# D			故	line .	- 31	45,783	alpha -Withalbalate	1234	0.80
								31	42.306	Owlta -Culines	940	8,18
								- 30	111.111	1-2minargelight. T. J. B (1.811) 3. P. Landscann	1104	3,41

FIG 3: GC/MS analysis of oil sample, obtained from specimen growing at Yaarikhah Tangmarg.

DISCUSSION

varied markedly in specimens growing at different localities. The observed increase in carvacrol and p- cymene with corresponding decrease in γ terpinene content indicates a biosynthetic correlation between the two compounds. Reports suggest that at high altitudes carvacrol biosynthetic pathway is favoured and becomes more efficient than the thymol biosynthetic pathway as is remarkably found in our analysis as well. The present study indicated that the oil of *Origanum vulgare* from the Kashmir region is mainly a carvacrol- rich chemotype which has good importance because of its high biological as well as its antioxidant activity.

In the examination of the essential oil content, geographical variations have an impact on it because its oil mainly contains mono terpenes and change sesquiterpene which easily by environmental conditions and geographic origins. A number of studies have shown that variation in chemical features may occur within a single Origanum species. Furthermore, it has been found that the pattern of variation of a single species follows its geographical distribution or depends on the season of plant collection as well as the conditions used for drying and storage (Kokkini et al., 1994, 1996, 1997; Dorman et al., 2000).

From the present study it is quite evident that the *Origanum vulgare* (L.) growing under cultivated conditions at (Srinagar) is a new chemo type whose chemical profile is neither matching with the plant specimens growing wild at different geographical

Mudasir and Chishti, World J Pharm Sci 2016; 4(2): 247-251 locales (Pulwama and Tangmarg) of Kashmir valley nor with the *Origanum vulgare* (L.) growing elsewhere in the world. Cymene was found only in the sample growing at Srinagar (lower altitude) and totallv absent at higher altitudes. Correspondingly the percentage of Sabinene was markedly found at all three locations but was significantly higher in plant samples growing at mid altitudes (Pulwama). This difference in the essential oil composition of the said plant specimen is ascribed to the variations in the eco-edaphic or cultivation conditions of plant or may be because of structural or physiological modifications in the plant caused by specific environmental factors (phenotypic plasticity). Thus the composition differentiation and the causes thereof requires detailed analysis.

> Conclusions: The essential oil composition of three plant populations appeared quite different and allows us to identify three different chemotypes of Origanum vulgare growing in the valley. The altitudinal variation has marked effect on the presence and percentage of chemical constituents of its essential oil. The study concluded that it will be useful to study the conditions of the location where aromatic plants are to be cultivated, because the geographical regions, even in the same country, affects not only the volatile oil percentage but also its composition. Moreover, for the production of a compound of interest a specific geographical location can be used for growing the plant specimens. More studies in this area of research are recommended in order to explain exactly how the environmental conditions and the altitude affect the oil composition of aromatic plants

> **Conflict of Interests:** The authors declare that there is no conflict of interest.

Collected from three different geographical locales of Kashmir Himala								
S.	Compound name	% composition						
No		Srinagar	Pulwama	Tangmarg				
1	α-Thugene	0.888	1.163	0.688				
2	α-Pinene	0.959	0.713	0.451				
3	Sabinine	15.257	18.083	6.527				
4	β-Pinene	1.218	1.261	0.817				
5	α-Terpine	2.250	1.449	1.758				
6	Cymene	23.943	-	-				
7	Limonene	0.163	0.367	0.378				
8	Cis- ocimene	5.114	0.526	1.638				
9	β-trans Ocimene	4.106	3.430	-				
10	γ-Terepinene	38.394	25.725	8.429				
11	Methyl carvacrol	3.495	-	-				
12	Carvacrol	0.897	14.782	27.198				
13	β-Caryophyllene	1.245	2.953	0.895				
14	Germacerene-D	1.248	1.701	0.587				

 Table 1: Essential Oil composition (% total) identified by GC-MS of Origanum vulgare,

 Collected from three different geographical locales of Kashmir Himalaya.

15	Cis-α- bisabolene	0.466	-	-
16	δ-cadinene	0.358	0.941	0.169
17	p-cymene	-	21.123	33.290
18	Cis sabinene hydrate	-	-	8.737
	acetate			
19	4-Terpineol	-	0.216	2.442
20	Borneol	-	-	1.338
21	Thymol methyl ether	-	1.764	0.393
22	7-Tetracyclo undecane	-	1.436	0.440
23	β- borbonene	-	0.260	0.398
24	α-caryophylene	-	0.582	0.331
25	Thymol	-	0.062	0.815
26	Taugurgenene	-	0.734	-
27	Alloromadendrene	-	0.234	-
28	Cardreanol.	-	0.215	-
29	α -cadinene.	-	0.212	-
30	β-cubebene.	-	0.069	-
31	3-carene.	-	-	0.968
32	α-Himachalene.	-	-	0.920
33	Terpinolene.	-	-	0.398
34	Camphene.	-	-	0.158
35	Total no of compounds	16	25	25

Mudasir and Chishti, World J Pharm Sci 2016; 4(2): 247-251

REFERENCES

- Adams RP. Identification of essential oil components by Gas Chromatography / Mass Spectrometery, 4th ed.; Allured Publishing: Carol Stram IL, USA, 2007.
- 2. Cleff M, et al., In Vitro activity of Candida Species. Brazilian Journal of Microbiology, 2010; 42: 116-123.
- 3. D' antuno LF, et al., Variability of Essential oil content and composition of *Origanum vulgare L*. Populations from a North Mediterranean Area (Liguria Region, Northern Italy). *Annals of Botany*, 2000; 86: 471-478.
- 4. Dorman H J D, Deans SG. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000; 88(2):308 316.
- 5. Duman H, et al., Two new species and a new hybrid from Anatolia. Turkish Journal of Botany, 1998; 22: 51-55.
- 6. Figuerdo G, et al., Studies of Mediterranean Oregano populations VIII: Chemical composition of essential oils of Oregano of various origins. *Journal of Essential Oil Research*, 2006; 21: 134-139.
- 7. Gounaris Y, et al., Comparison of essential oils and genetic relationship of *Origanum* x *intercedens* to its parental taxa in the island of Crete. Biochem. System. And Ecol, 2002; 30:249-258.
- Ietswaart JU. A taxonomic revision of the genus Origanum (Labiatae), Leiden Botanical Series, Vol. 4 Leiden University Press: The Vague Leiden, 1980.
- 9. Jennings W, Shibamoto T. Qualitative analysis of Flavour and Fragrance volatiles by Glass Capillary Gas Chromatography. Academy Press: New York, 1980.
- 10. Kokkini S, et al., Pattern of geographic variation of *Origanum vulgare* trichomes and essential oil content in Greece. *Biochem. Syst. Ecol.*, 1994;22: 517-528.
- 11. Kokkini S, et al., Autumn essential oils of Greek oregano (Origanum vulgare subsp. hirtum). Phytochemistry, 1996;44: 883-886.
- 12. Kokkini S. Taxonomy, diversity and distribution of *Origanum* Species. In: Padulosi S, (ed.) Oregaro, 14. Proceedings of IPGRI International workshop.Italy,Rome, 1997;PP 2-12.
- 13. Lawrence BM, Reynolds R.J.The botanical and chemical aspects of oregano. Perfumer and Flavorist, 1984; 9:41-51.
- Padie Chitra, Mathela CS. Essential oil composition of Origanum Vulgare L. SSP. Vulgare from the Kumaon Himalayas. Journal of Essential Oil Research, 2000;12: 441-442.
- Poulose A.J, Croteau R.. Biosynthesis of aromatic smonoterepenes, Conversion of γ-terpinene to p-cymene and thymol in Thymus vulgaris L. Arch. Biochem. Biophys, 1978; 187:307-314.
- 16. Sahin F, et al., Biological activities of the essential oil and methanol extract of *Origanum vulgare ssp. vulgare* in the Eastern Anatolia region of Turkey. *Food Control*, 2004; 15:549-557.
- 17. Sezik E, et al., Essential Oil composition of four Origanum vulgare subspecies of Anatolian origin. Journal of Essential Oil Research, 1993; 5: 425-431.
- Skoula M, Harborne JB.Taxonomy and Chemistry. In: Kintzios SE (Ed.) Oregano: The Geners Origanum and Lippia. Medicinal and Aromatic Plants, Industrial Profiles 25. Taylor & Francis/ CRC Press, USA, 2002; PP 67-108.
- 19. Verma R.S, et al., Essential oil composition of menthol mint (*Mentha arvensis*) and peppermint (*Mentha piperita*) cultivars at different stages of plant growth from Kumaon region of western Himalaya, *Open Acc. J. Med. Arom. Plants*, 2010; 1:13-18.