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ABSTRACT 

  

Staphylococcus aureus is a bacterium that is a common cause of skin infection, respiratory disease and food 

poisoning. Pyruvate kinase is an enzyme involved in glycolysis. Inhibition of pyruvate kinase initiates reverse 

sequence of glycolysis that is lethal for bacterium. Docking and 3D quantitative structure activity relationship 

(3D-QSAR) studies were performed on 46 Indole hydrazone derivatives reported as inhibitors of Pyruvate 

kinase.  Ligands were built and docked into protein active site using GLIDE 5.6. The docked poses were 

analyzed and the best docked poses were selected for further 3D-QSAR analysis using comparative molecular 

field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methodology. QSAR 

models were generated using 35 molecules in the training set. Developed models showed good statistical 

reliability which is evident from r
2

ncv and r
2

loo values. The predictive ability of these models was determined 

using a test set of 11 molecules that gave acceptable predictive correlation (r
2
Pred) values. CoMFA models 

provide the most significant correlation of steric and electrostatic fields with biological activities.  CoMSIA 

model provides a correlation of steric, electrostatic, acceptor, donor and hydrophobic fields with biological 

activities. The information rendered 3D QSAR model initiated us to optimize the lead and design new potential 

inhibitors. 

 

Key Words: CoMFA (Comparative molecular field analysis), CoMSIA (Comparative molecular similarity 

indices analysis), PLS (partial least square) analysis, PK (pyruvate kinase), MRSA (Methicillin-resistant 

Staphylococcus aureus) 

 
 

INTRODUCTION 

 

Staphylococcus aureus is a gram positive coccus 

bacterium that is a member of the Firmicutes, and 

is commonly found in the human respiratory tract 

and on the skin. S. aureus is a common cause of 

skin infections, respiratory disease and food 

poisoning. Disease-associated strains often promote 

infections by producing potent protein toxins, and 

expressing cell-surface proteins that bind to 

antibodies and inactivate them. The emergence of 

antibiotic-resistant forms of pathogenic S. aureus 

e.g. methicillin-resistant Staphylococcus aureus 

(MRSA) and vancomycin-resistant I (VRSA) have 

become worldwide problem in clinical medicine. 

Pyruvate kinase (PK) is one of the most highly 

connected „hub proteins‟ in MRSA. [1] PK is 

critical for bacterial survival which makes it a 

potential target for development of novel 

antibiotics and the high degree of connectivity 

implies it should be very sensitive to mutations and 

thus less able to develop resistance. Pyruvate 

kinase [2] is an enzyme involved in glycolysis.  It 

catalyses the transfer of a phosphate group from 

phosphoenolpyruvate to ADP, yielding one 

molecule of pyruvate and one molecule of ATP. 

PK has human homologous enzymes that has 

unique peptide sequence insertion and deletion 

differences from the bacterial enzymes, this 

produces druggable lipophylic pockets on the 

bacterial enzyme that are absent on the human 

forms. One of these pockets was probed in an in 

silico screening effort [3]. Computational drug 

design approaches are vastly employed in 

development and optimization of inhibitors. A 

detailed study of molecular interactions of pyruvate 

kinase inhibitors with the protein will help in 

design of novel molecules for better antibacterial 

activity. Our main objective was to obtain 

structural requirements for pyruvate kinase 

inhibitors and design novel molecules.  In present 

article we report receptor based 3D-QSAR [4-7] 
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studies using CoMFA [8, 9] and CoMSIA [10] 

methodologies on indole hydrazone derivatives 

[11].  Partial least square (PLS) [12] based 

statistical analysis was carried out on 46 molecules 

to identify the correlation.  The contour maps 

generated enabled us to explain the observed 

variation in activity and guided us to design new 

molecules. 

 

METHODOLOGY 

 

The crystal structure of staphylococcus aureus 

pyruvate kinase (pdb id: 3TOT) [13] was 

downloaded from the protein databank. GLIDE 5.6 

[14] was used for molecular docking.  The protein 

was prepared using protein preparation module 

applying the default parameters, a grid was 

generated around the active site of the pyruvate 

kinase with receptor van der Waals scaling for the 

nonpolar atoms as 0.9 [15]. A set of 46 known 

pyruvate kinase inhibitors were selected from 

literature [11].  These were built using maestro 

build panel and prepared by Lig prep application in 

Schrödinger 2010 suite. The molecular docking of 

the 46 molecules into the generated grid was 

performed by using the extra – precision (XP) 

docking mode [16]. The crystal structure ligand 

was also docked and its root mean square deviation 

(RMSD) was calculated to validate the docking 

process. The analysis of dock poses of all the 

molecules showed similar hydrogen bond 

interaction with the active site residue. The best 

dock pose for each molecule was chosen for 

CoMFA and CoMSIA analysis without further 

alignment that is super imposition of ligands based 

on the common substructure for a set of molecule 

was not done, docked based alignment is shown in 

figure 2. The molecules were imported into 

SYBYLX1.2 [17] molecular modeling program 

package, Gasteiger-Huckel charges [18] were 

assigned.  The standard Tripos force fields were 

employed for the CoMFA and CoMSIA analyses.  

A 3D cubic lattice of dimension 4 Å in each 

direction with each lattice intersection of regularly 

spaced grid of 2.0Å was created. The steric and 

electrostatic parameters were calculated in case of 

the CoMFA fields while hydrophobic, acceptor and 

donor parameters in addition to steric and 

electrostatic were calculated in case of the 

CoMSIA fields at each lattice.  The SP
3
 carbon was 

used as a probe atom to generate steric (Lennard 

Jones potential) field energies and a charge of +1 to 

generated electrostatic (Columbic potential) field 

energies. A distance dependented dielectric 

constant of 1.00 was used. The steric and 

electrostatic contributions were cut off at 30 k cal 

mol
-1

.  A partial least squares (PLS) regression was 

used to generate a linear relationship that correlates 

changes in the computed fields with changes in the 

corresponding experimental values of biological 

activity ( pKi ) for the data set of ligands. The data 

set was divided into training set consisting of 35 

molecules and test set of 11 molecules.  Biological 

activity values of ligands were used as dependent 

variables in a PLS statistical analysis.  The column 

filtering value (s) was set to 2.0 K cal mol
-1

 to 

improve the signal-to-noise ratio by omitting those 

Lattice points whose energy variation were below 

this threshold.  Cross-validation was performed by 

the leave-one-out (LOO) procedure to determine 

the optimum number of components (ONC) and the 

coefficient r
2
loo. Optimum number of components 

obtained is then used to derive the final QSAR 

model using all of the training set compounds with 

non-cross validation and to obtain the conventional 

regression coefficient (r
2
).  To validate the CoMFA 

and CoMSIA derived models, the predictive ability 

for the test set compounds (expressed as r
2
pred) was 

determined by using the following equation.   

                

     r
2

pred = (SD-PRESS)/SD 

 
SD is the sum of the squared deviation between the 

biological activities of the test set molecules and 

the mean activity of the training set compounds. 

PRESS is the sum of the squared of the deviation 

between the observed and the predicted activities of 

the test set compounds. Since the statistical 

parameters were found to be the best for the model 

from the LOO method, it was employed for further 

prediction of the designed molecules. The designed 

molecules were also constructed, minimized and 

docked into the protein active site same as 

mentioned above. 

 

RESULTS AND DISCUSSION 

 

Evaluation of accuracy of docking process is 

determined by measuring how closely the lowest 

energy pose (binding conformation) predicted by 

the object scoring function (Glide score), resembles 

an experimental binding mode as determined by X-

ray crystallography. In the present study extra 

precision glide docking procedure was validated by 

removing compound 22 from the binding site and 

redocking it into the binding site of pyruvate 

kinase. We found a very good agreement between 

the localization of the inhibitor upon docking and 

from the crystal structure. The root mean square 

deviation between the predicted conformation and 

the observed X-ray crystallographic conformation 

of compound 22 equaled 0.267 Å (figure 3), a 

value that suggests the reliability of Glide docking 

in reproducing the experimentally observed binding 

mode for pyruvate kinase inhibitor and the 

parameter set for the docking is reasonable to 

reproduce the X-ray structure. The 3D-QSAR 

CoMFA and CoMSIA analysis were carried out 
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using indole hydrazone derivatives reported as 

Pyruvate kinase inhibitors. Molecules having 

inhibitory activity against pyruvate kinase enzyme 

with precise IC50 values were selected. A total of 

46 molecules were used for derivation of model, 

these were divided into training set of 35 molecules 

and test set of 11. Keeping in view that the activity 

range is with a minimum of 2.8 log unit differences 

in both the sets.   

 

The CoMFA and CoMSIA statistical analysis is 

summarized in table 1, Statistical data shows q
2
loo 

0.606 for CoMFA 0.548 for the CoMSIA models, 

r
2
nov of 0.965 for CoMFA and 0.911 for CoMSIA 

which indicates a good internal predictive ability of 

the models. To test the predictive ability of the 

models, a test set of 11 molecules excluded from 

the model derivation was used. The predictive 

correlation coefficient r
2

predof 0.65 for CoMFA and 

0.66 for the CoMSIA models indicate good 

external predictive ability of the models. The 

experimental and predicted activity from CoMFA 

and CoMSIA model is given in table2. Scatter plot 

of experimental vs predicted pIC50 values is 

represented in figure 4.     

 

To visualize the information content of the derived 

3D-QSAR model, CoMFA and CoMSIA contour 

maps were generated. Contour plots are the 

representations of the lattice points and the 

difference in the molecular field values at lattice 

points is strongly connected with difference in the 

receptor binding affinity. Molecular fields define 

the favorable or unfavorable interaction energies of 

docked molecules with a probe atom traversing 

across the lattice grid points surrounding the 

molecules. The 3D colored plots suggest the 

modification required to design new molecules. 

The contour maps of CoMFA denote the region in 

the space where the docked molecules would 

favorably or unfavorably interact with the receptor 

while the CoMSIA contour maps denote those 

areas within the specified region where the 

presence of a group with a particular 

physicochemical activity binds to the receptor. The 

CoMFA/CoMSIA results were graphically 

interpreted by field contribution maps using the 

“STDEV*COEFF” field type. Figure 5 (a, b) shows 

the contour maps derived from the CoMFA PLS 

model. The most potent analogue, compound 10, 

was embedded in the map (a), while least active 

compound 24 was embedded in the map (b) to 

demonstrate its affinity for the steric and 

electrostatic regions of inhibitors. The areas of 

yellow indicates region of steric hindrance to 

activity, while green areas indicate a steric 

contribution to potency. The blue regions indicate 

positive electrostatic charge potential associated 

with increased activity, while red region show 

negative charge potential. 

 

Substitutions at 3
rd

 position of indole ring orients 

towards disfavored yellow region, indicates 

substitution at this position with bulky group leads 

to decrease in the activity. Bromo group is oriented 

towards sterically favored region, substitution at 

this position with bulky groups will increase the 

activity.  The carbonyl group is oriented toward 

blue region indicating unfavored negative 

electrostatic potentials. All these explain the 

highest activity of the compound. The presence of a 

bulkier group on phenyl ring should increase the 

activity. This is evident from compounds 43, 44, 45 

and 46 which are having a napthyl ring instead of 

phenyl. 

 

Figure 6, 7, 8 shows the contour maps derived from 

the CoMSIA PLS model.  The most potent 

analogue, compound 10, was embedded in the map 

(a, c), while least active compound 24 was 

embedded in the map (b, d) to demonstrate its 

affinity for the steric, electrostatic, hydrophobic, H-

bond acceptor and H-bond donor regions of 

inhibitors. The steric map is similar to the CoMFA 

steric map showing favored and disfavored regions. 

Absence of steric group at benzoyl ring in 

compound 24 shows lower activity; where as in 

compound 10, bromide substitution on benzoyl ring 

increased the activity.  

 

The electrostatic contour maps show a red region 

near the nitrogen and 3
rd

 position of indole ring 

indicating a negative electrostatic potential, should 

increase the potency as seen in the case of 

compound 10. The blue regions near the 4
th

, 5
th

 and 

6
th

 position of indole indicates a region with 

positive electrostatic potential. The hydrophobic 

contour show a favored yellow region near the 2
nd

 

position of benzoyl ring and a hydrophilic white 

region covering whole molecule except hydrazone 

moiety and –CO, –OH groups of benzoyl ring. The 

magenta and red contours represent favorable and 

unfavorable H-bond acceptor groups respectively. 

The H-bond acceptor contour maps show the 

favored region for hydrogen bond acceptor groups 

near the –NH group of indole ring and a disfavored 

region for hydrogen bond acceptor near the –CO 

and -OH group of benzoyl ring.  

 

The cyan and purple contour represents favorable 

and disfavorable hydrogen bond donor groups 

respectively. The H-bond donor contour maps 

showed favored region for hydrogen bond donor 

groups near –OH of benzoyl ring. The detailed 

contour map analysis of both CoMFA and 

CoMSIA models empowered us to identify 

structural requirements for the inhibitory activity. 
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The molecules were modified further to improve 

the inhibition activity toward Pyruvate kinase. 

Compound 10 having best activity was chosen as a 

reference structure to design new molecules (Figure 

10) to obtain a greater number of new potent 

molecules. The newly designed molecules were 

docked into the protein active site. Dock poses 

were used to predict the activity by applying the 

3D-QSAR model. The new molecules showed 

better dock score and predicted activity (Table 3). 

 

Newly designed compounds were analyzed for 

drug-likeness by assessing their physiochemical 

properties (Table 4) and by applying Lipinski‟s rule 

of five. The Lipinski‟s rule for drug like molecules 

states that the molecule should have molecular 

weight <650 Daltons, H-bond donors <5, H-bond 

acceptors <10, and a log P of <5. For the designed 

molecules, the partition coefficient (QPlogPo/w) 

and water solubility (QPlogS) are critical for 

estimating the absorption and distribution of drugs 

within the body, which ranged between 4.148-

6,219 and 5.914-8.461, respectively. Caco-2 cell 

permeability (QPPCaco), a model governing gut-

blood barrier, ranged from 542.81 to 1354.462. 

MDCK cell permeability (QPPMDCK), a model 

that mimics the blood brain barrier, ranges from 

1248.378 to 10000. Further, the predicted 

percentage human oral absorption for 5 molecules 

is 100%. All these pharmacokinetic parameters 

were found to be with in the acceptable range (table 

4), out of five molecules, two molecules deviated 

from QPlogS
 
due to CF3 that reduced the solubility 

of designed molecule. 

CONCLUSIONS 

 

3D-QSAR is widely employed to develop new 

molecules that have an improved biological 

activity. CoMFA and CoMSIA methodologies 

were used to build models for Pyruvate kinase 

inhibitory activity of the Indole hydrazone 

derivatives. Based on the detailed contour map 

analysis, improvement in pyruvate kinase binding 

affinity can be achieved through conformationally 

restricted substitution at the benzoyl ring, 

maintaining the hydrogen bond donor character 

with less steric hindrance at these regions. The 

designed molecules based on these parameters 

showed better activity than the reference 

molecules, which indicates that the 3D-QSAR 

model generated has a good predictive ability and 

can be used to design new molecules with better 

activity. 
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TABLE 1: PLS RESULT SUMMARY 

Statistical parameters CoMFA CoMSIA 

q
2
loo

a 

Number of molecules in training set 

Number of molecules in test set 

ONC
b 

SEE
c 

r
2 d 

Fratio
e 

r
2

pred
f 

Fraction of fields contributions 

Steric 

Electrostatic 

Hydrophobic 

Acceptor 

Donor 

0.606 

35 

11 

6 

0.133 

0.965 

129.977 

0.65 

 

67.4% 

32.6% 

-- 

-- 

-- 

0.548 

35 

11 

5 

0.210 

0.911 

59.083 

0.66 

 

15.5% 

25.8% 

31.4% 

17.5% 

9.7% 

 a – Cross-validation correlation coefficient by leave one out method, 

 b – Optimum number of components 

 c – Standard error of estimate 

 d – Conventional correlation coefficient  

 e – Fisher test value 

 f – Cross-validation correlation coefficient on test set. 
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TABLE 2: EXPERIMENTAL pIC50, PREDICTED pIC50 AND GLIDE SCORES OF PYRUVATE KINASE 

INHIBITORS 

Compound Expt. pIC50 Pred. pIC50  

CoMFA 

Pred. pIC50 

CoMSIA 

Glide Score 

(kcal/mol) 

1 

2 

3 

4 

5 

6
t 

7 

8
t 

9 

10 

11 

12 

13
t 

14
t 

15
t 

16 

17
t 

18
t 

19 

20
 t 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34
 t 

35 

36 

37
 t 

38 

39 

40 

41
 t 

42 

43 

44 

45 

46 

7.070 

7.309 

7.283 

7.309 

7.366 

6.669 

7.619 

7.690 

7.619 

7.823 

6.782 

6.642 

6.835 

6.100 

7.769 

7.210 

6.838 

7.259 

6.419 

6.540 

6.649 

7.040 

6.643 

5.064 

5.882 

6.821 

6.739 

7.200 

6.600 

7.193 

7.130 

6.849 

6.316 

6.075 

6.063 

6.899 

6.345 

7.309 

6.774 

5.510 

6.336 

5.218 

7.376 

6.939 

7.102 

7.283 

6.834 

7.438 

7.247 

7.404 

7.357 

7.014 

7.509 

7.548 

7.641 

7.768 

6.827 

6.608 

6.904 

6.602 

6.482 

6.988 

7.030 

6.957 

6.210 

6.556 

6.645 

7.034 

6.613 

5.050 

6.097 

6.997 

6.815 

7.296 

6.625 

7.119 

7.075 

6.490 

6.647 

6.473 

6.122 

6.783 

6.005 

7.238 

6.774 

5.508 

6.020 

5.198 

7.227 

7.024 

7.103 

7.456 

6.724 

7.319 

7.268 

7.337 

7.279 

7.053 

7.603 

7.451 

7.426 

7.692 

6.689 

6.624 

6.576 

6.410 

6.471 

7.005 

6.969 

7.183 

6.025 

6.073 

6.631 

6.995 

6.780 

5.550 

5.735 

7.257 

6.913 

7.197 

6.594 

7.042 

7.041 

6.540 

6.483 

6.383 

6.320 

6.833 

6.115 

7.404 

6.696 

5.528 

5.971 

5.156 

7.147 

6.965 

7.255 

7.663 

-8.671 

-8.327 

-8.298 

-8.284 

-8.292 

-8.177 

-8.147 

-8.581 

-8.715 

-8.698 

-8.266 

-7.651 

-7.647 

-7.683 

-7.594 

-8.062 

-8.015 

-7.962 

-8.199 

-8.208 

-7.906 

-7.771 

-7.529 

-8.215 

-8.719 

-8.769 

-8.912 

-9.000 

-8.638 

-7.623 

-8.781 

-8.637 

-8.102 

-8.692 

-8.511 

-8.832 

-8.142 

-8.298 

-7.518 

-7.860 

-8.307 

-8.334 

-9.773 

-8.049 

-8.163 

-9.341 

  t=Test set molecule 
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TABLE 3: GLIDE SCORE AND PREDICTED ACTIVITY OF NEWLY DESIGNED MOLECULES: 

CH3

N NH

N

H

O

F

F

F

R
1

R
2

R
3

 

Compound R
1 

R
2 

R
3 

Pred pIC50 

CoMFA 

Pred pIC50 

CoMSIA 

Glide Score 

(kcal/mol) 

1 

2 

3 

4 

5 

NH2 

NH2 

NH2 

H 

H 

Br 

CH3 

Cl 

CF3 

CF3 

H 

H 

H 

H 

CF3 

7.336 

7.091 

7.076 

7.047 

7.010 

7.321 

7.103 

7.112 

7.334 

7.650 

-7.898 

-8.509 

-8.468 

-8.719 

-8.673 

 

 

TABLE 4: ADME PROPERTIES OF NEWLY DESIGNED MOLECULE: 

Compound
 a 

QPlogPo/w
b 

QPlogS
c 

QPPCaco QPPMDCK %Human oral 

absorption 

1 

2 

3 

4 

5 

4.407 

4.148 

4.331 

5.232 

6.219 

-6.190 

-5.914 

-6.076 

-7.016 

-8.461 

542.802 

542.177 

542.734 

1353.121 

1354.462 

3315.282 

1248.378 

3082.835 

10000 

10000 

100 

100 

100 

100 

100 

a.  Newly designed molecules.  

b.  Predicted octanol/water partition coefficient log P (Acceptable range-2.0 to 6.5) 

c.  Predicted aqueous solubility’s in mol/L (Acceptable range -6.5 to 0.5) 

d.  Predicted BBB permeability (Acceptable range-3 to 1.2) 

e.  Predicted Caco cell permeability in nm/s (Acceptable range :< 25 is poor and >500 is great) 

f.  Predicted apparent MDCK cell permeability in nm/s (Acceptable range in nm/s (Acceptable 

    range : < 25 is poor and>500 is great) 

g.  Percentage of human oral absorption (Acceptable range: <25 is poor and >80% is high). 
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Figure 1: Structure of s. aureus pyruvate kinase inhibitors 
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Figure 2: Docked base alignment of indole hydrazone derivatives. 

 

 Figure 3: Superimposition of crystal structure pose (green) on docked pose (blue) of co-crystallized 

ligand. the rms deviation is 0.267Å 

 

Scatter plot of Expt.pIC50 vs Pred 

pIC50 - CoMFA

R2 = 0.9654

4.0
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6.0

7.0

8.0

4.0 5.0 6.0 7.0 8.0 9.0

Experimental pIC50

P
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d
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d
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5
0

           

Scatter plot of Expt.pIC50 vs Pred 

pIC50 - CoMSIA

R2 = 0.9106
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P
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d
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5
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Figure 4: scatter plot of predicted vs experimental pIC50 values (test set is represented as squares and 

training set represented as triangles ) 
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                                (a)                                                                      (b) 

Figure 5: CoMFA steric standard deviation (s.d.
* 

coefficient) contour maps illustrating steric and 

electrostatic features in combination with compound (a) 10 and (b) 24. green contours show favorable 

bulky group substitution at that point while yellow regions show disfavorable bulky group for activity. 

red contours indicate negative charge favoring activity. whereas blue contours indicate positive charge 

favoring activity. 

 

             

                              (a)                                                                        (b) 

               

                                       (c)                                                                       (d) 

Figure 6: CoMSIA s.d.
*
 coefficient contour maps illustrating steric and electrostatic features in 

combination with compound 10 and 24. (a,b) the green contour indicates a sterically favored region; 

yellow maps calls for a reduction of this potential to improve activity. (c, d) blue indicates a positive 

charge preferred region to improve activity; red indicates a negative charge preferred region to improve 

activity. 
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                               (a)                                                                               (b) 

Figure 7: CoMSIA s.d.
*
 coefficient contour maps illustrating hydrophobic features in combination with 

compound 10 and 24. (a, b) the yellow contour for hydrophobic favored region, white indicates the 

hydrophilic favored region. 

 

                  

 (a)                                                                                  (b) 

                   

 (c)        (d) 

Figure 8: CoMSIA s.d.
*
 coefficient contour maps illustrating acceptor and donor features in combination 

with compound 10 and 24. (a, b) the cyan contour for h-bond donor group increase activity, purple 

indicates the disfavored region. (c,d) the magenta contour for h-bond acceptor group increase activity, 

red indicates the disfavored region. 
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Figure 9: Docked pose of molecule 10 in the protein active site. showing the hydrogen bond interaction 

(yellow lines) with Ser 362. 

CH3

N NH

N

H

O

Br

OH

F

F

F

H

electronegative 
favored,sterically 
disfavored region.

H-bonddonor, 

stericallydisfavored 

regionelectronegative favored region

electronegative 

charge 
disfavored 
region

hydrophobic and

sterically favored region

Figure 10: structure requirements for binding and inhibitory activity of indole hydrazone 

 

Figure 11: Docked pose of newly designed molecule 4 in the protein active site. showing the hydrogen 

bond interaction (yellow lines) with Ser 362. 
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